Difference equations and highest-weight modules of

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Difference Equations and Highest Weight Modules of U Q [sl(n)]

The quantized version of a discrete Knizhnik-Zamolodchikov system is solved by an extension of the generalized Bethe Ansatz. The solutions are constructed to be of highest weight which means they fully reflect the internal quantum group symmetry.

متن کامل

Highest-weight Theory: Verma Modules

We will now turn to the problem of classifying and constructing all finitedimensional representations of a complex semi-simple Lie algebra (or, equivalently, of a compact Lie group). It turns out that such representations can be characterized by their “highest-weight”. The first method we’ll consider is purely Lie-algebraic, it begins by constructing a universal representation with a given high...

متن کامل

Laplace transform and unitary highest weight modules

The unitarizable modules in the analytic continuation of the holomorphic discrete series for tube type domains are realized as Hilbert spaces obtained through the Laplace transform.

متن کامل

2 0 M ay 1 99 8 Difference Equations and Highest Weight Modules of U q [ sl ( n ) ]

The quantized version of a discrete Knizhnik-Zamolodchikov system is solved by an extension of the generalized Bethe Ansatz. The solutions are constructed to be of highest weight which means they fully reflect the internal quantum group symmetry.

متن کامل

Characterization of Simple Highest Weight Modules

We prove that for simple complex finite dimensional Lie algebras, affine Kac-Moody Lie algebras, the Virasoro algebra and the Heisenberg-Virasoro algebra, simple highest weight modules are characterized by the property that all positive root elements act on these modules locally nilpotently. We also show that this is not the case for higher rank Virasoro and for Heisenberg algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 1998

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/31/47/018